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ABSTRACT 
 

An important scientific debate took place regarding falling bodies hundreds of years ago, and it still warrants close 

examination. Galileo argued that in a vacuum all bodies fall at the same rate relative to the earth, independent of 

their mass. As we shall see, the problem is more subtle than meets the eye -- even in vacuum. In principle the results 

of a free fall experiment depend on whether falling masses are sequential or concurrent, whether they fall side by 

side or diametrically opposed. In the current paper we will present both the classical mechanics treatment and the 

general relativity one. In the case of classical mechanics, we start from the basic equations of motion.  On the other 

hand, the determination of particle equations of motion in gravitational fields in general relativity is done routinely 

via the use of covariant derivatives. Since the geodesic equations based on covariant derivatives are derived from 

the Euler-Lagrange equations and since the Euler-Lagrange formalism is very intuitive, easy to derive with no 

mistakes, there is every reason to use them even for the most complicated situations and this is exactly what we do 

in the second part of the current paper.  

Keywords : Classical Mechanics, General Relativity, Schwarzschild Metric, Euler-Lagrange Formalism, PACS: 
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I. INTRODUCTION 

 

Classical treatment of radial motion-Time to collision 

 

In the early 17th century, Galileo [1] made the 

observation: "But I, Simplicia, who have made the test, 

can assure you that a cannon ball weighing one or two 

hundred pounds, or even more, will not reach the ground 

by as much as a span ahead of a musket ball weighing 

only half a pound, provided both are dropped from a 

height of 200 cubits." 

 

Galileo argued that the slight difference in time could be 

ascribed to the resistance offered by the medium to the 

motion of the falling body. In air, feathers do fall more 

slowly than rocks. Galileo then made the idealization 

that in a medium devoid of resistance (a vacuum), all 

bodies will fall at the same speed. This idealization 

neglected the complexity of the fall of objects in media 

accessible to Galileo and was indeed a significant 

advance toward a deeper understanding of the motion of 

bodies. Galileo used experiments with an inclined plane 

to promote his view that heavy and light bodies fall 

equally fast. Another Italian, Galileo’s contemporary, 

Torricelli, in his opus, De motu gravium , seeks to 

further demonstrate Galileo’s principle regarding equal 

velocities of free fall of weights along inclined planes of 

equal height. We ask ourselves, “were Galileo and 

Torricelli right?”.  As we shall see in the next paragraph 

the answer is complex: within the experimental 

precision, they were right; from the point of view of a 

rigorous application of mechanics, they were both wrong.  

In Newtonian mechanics formulation, for the case of 

radial motion reduces to solving the equation of motion: 

 
2

2 2

d z GMm
m

dt d
      

     (1.1) 

 

where z  represents the radial coordinate and d is the 

distance between the centers of the attracting bodies (. 

 

It is interesting to note that GR and Newtonian 

mechanics produce exactly the same equation of motion. 

Equation (1.1) gives us the tool for determining when 

two bodies of radiuses R  and 1r  and masses M and m 

will collide after starting from rest at locations 
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(0)z D  and respectively (0) 0Z   separated by the 

initial distance D (see fig.1). 

 
Figure 1. Simple setup for radial motion in a 

gravitational field 

 

We would need to solve the system of differential 

equations: 

 

2

2 2

2

2 2

( )

( )

d z GM

dt Z z

d Z Gm

dt Z z

 


 


    

     (1.2) 

 

with initial conditions:  

 

0 0

(0)

(0) 0

| | 0t t

z D

Z

dZ dz

dt dt
 





 

    

     (1.3) 

Z z R r    

 

and find out the time when 1( ) ( )z t Z t R r    (i.e., 

when the two masses touch) by solving a transcendental 

equation in t. The system gets easily reduced to a single 

equation by subtracting the two equations: 

 

2

2 2

( ) ( )

( )

d z Z G M m

dt z Z

 
 


   

     (1.4) 

 

Equation (4) has the general solution (see Appendix): 

 

( )
( ( )( ( )))

( )

G M m z Z
t D arctg z Z D z Z

D D z Z

 
    

 

   (1.5) 

 

At the time of collision, 1z Z R r    so: 

 

3/2
1 11

1

( )( ( ))
( )

( )( )

R r D R rR rD
t arctg

D R r DG M m

  
 

 

   (1.6) 

 

The time to collision does depend on the mass of the 

probe, so both Galileo and Torricelli were wrong. The 

reason is that, while the larger gravitating body attracts 

the smaller one, the effect is reciprocated by the smaller 

one. Thus, the time to collision is dependent on both 

masses. It is interesting to see that the effect is 

dependent on the sum of masses. We could not have 

demonstrated the above without solving , in a rigorous 

manner, the equations of motion. If we ask ourselves: 

“how big is the effect?” then (1.6) provides the answer, 

the effect is of the order of 
2

m

M
.  To put things in 

perspective, if we dropped a 1000kg mass on the Moon, 

the effect would be of the order of 
217*10

.  This is 

why Galileo could not measure it, it is too small. But it 

is there.  

 

Let’s now study a different case, the case of two test 

probes dropped simultaneously, side by side (see fig.2): 
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Figure 2. Two test probes side by side, dropped 

simultaneously 

 

   

2

1 1 1 2
1 2 2 2 2

1 2 1 2 1

( cos )
( ) ( ) ( )

d z Gm M Gm m
m

dt Z z z z r r
  

   

       

2

2 2 2 1
2 2 2 2 2

2 2 1 2 1

( cos )
( ) ( ) ( )

d z Gm M Gm m
m

dt Z z z z r r
  

   

     (1.7) 
2

1 2

2 2 2

1 2

( )
( ) ( )

GMm GMmd Z
M

dt Z z Z z
  

 
 

2 1

2 2

2 1 2 1

| |
cos

( ) ( )

z z

z z r r





  
,    being the angle of 

the central attraction force with the z-axis. 

 

The initial conditions are: 

 

1 2

0 0

(0) (0)

(0) 0

| | 0i
t t

z z D

Z

dzdZ

dt dt
 

 



 

    

     (1.8) 

 

The above results into a complicated system:: 

 

2

1 2 2 1

2 2 2 2 3
1 2 1 2 1

| |

( ) ( ( ) ( ) )

d z Gm z zGM

dt Z z z z r r


  

   

       

2

2 1 2 1

2 2 2 2 3
2 2 1 2 1

| |

( ) ( ( ) ( ) )

d z Gm z zGM

dt Z z z z r r


  

   

     (1.9) 

    

2

1 2

2 2 2

1 2( ) ( )

Gm Gmd Z

dt Z z Z z
 

 
 

 

While the above system may be very difficult to 

solve, we can still glean a very important physical 

property, the above system tells us that the two test 

probes will hit the Earth simultaneously. Indeed, 

subtracting the first two equations: 

 
2

1 2 2 1 2 1

2 2 2 2 2 3
2 1 2 1 2 1

( ) ( ) | |

( ) ( ) ( ( ) ( ) )

d z z G m m z zGM GM

dt Z z Z z z z r r

  
  

    

   (1.10) 

 

We easily verify that 1 2( ) ( ) 0z t z t   is a solution. 

Using the observation the above system can be solved 

much easier since it simplifies to: 

 

2

2 2( )

d z GM

dt Z z
 


    

     (1.11) 

     

2

1 2

2 2

( )

( )

G m md Z

dt Z z





    

  

 

Subtracting the first equation from the second one we 

obtain: 

 

2

1 2

2 2

( )( )

( )

G M m md Z z

dt Z z

 



   

     (1.12) 

 

with the initial conditions: 
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0 0

(0)

(0) 0

| | 0t t

z D

Z

dZ dz

dt dt
 





 

    

     (1.13) 

 

We need to find out the time when ( ) ( ) iZ t z t R r    

(i.e., when the two masses touch): 

 
3/2

1 2

( )( ( ))
( )

( )( )

i ii
i

i

R r D R rR rD
t arctg

D R r DG M m m

  
 

  

  (1.14) 

 

If the test probes have equal radiuses, their times to 

collisions will be equal.  

On the other hand, if the particles start 

simultaneously, diametrically opposed, the equations of 

motion are simpler (see situation depicted in fig.3): 

 

 
Figure 3. Two test probes dropped simultaneously, 

diametrically opposed 

 

 

2

1 1 1 2
1 2 2 2

1 2 1

( )
( ) ( )

d z Gm M Gm m
m

dt Z z z z
  

 
  

     

2

2 2 2 1
2 2 2 2

2 2 1

( )
( ) ( )

d z Gm M Gm m
m

dt Z z z z
  

 
  

     (1.15) 

2

1 2

2 2 2

1 2( ) ( )

GMm GMmd Z
M

dt Z z Z z
 

 
 

 

The initial conditions are: 

 

1

2

0 0

(0)

(0)

(0) 0

| | 0i
t t

z D

z D

Z

dzdZ

dt dt
 



 



 

    

     (1.16) 

 

After some simplifications, equations (1.15) become: 

 
2

1 2

2 2 2

1 2 1( ) ( )

d z GmGM

dt Z z z z
  

 
  

     
2

2 1

2 2 2

2 2 1( ) ( )

d z GmGM

dt Z z z z
 

 
   

     (1.17) 
2

1 2

2 2 2

1 2( ) ( )

Gm Gmd Z

dt Z z Z z
 

 
 

 

Though the equations of motion are simpler, our chances 

of solving system (1.17) are next to nil, at least 

symbolically. In this case we have means of determining 

which object collides first with the Earth. Nevertheless, 

we observe that by adding the three equations (1.17) we 

obtain an interesting relationship: 

 

2

1 1 2 22
( ) 0

d
MZ m z m z

dt
      

     (1.18) 

 

Given the initial conditions, (18) results immediately 

into: 

 

 1 1 2 2 1 2( )MZ m z m z D m m      

     (1.19) 

 

The physical interpretation of the above is that the two 

test probes and the Earth all move in such a fashion that 

their center of mass is stationary: 

 

1 1 2 2 1 2

1 2 1 2

( ) ( ) ( ) ( )
COM

MZ t m z t m z t D m m
Z

M m m M m m

  
 

   

     (1.20) 
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The above means that the test probes and the Earth must 

move towards the COM such that they all reach it at the 

same instant or the COM would move, which is not 

allowed as per (1.20). This gives us an idea: if 

1 2,M m m  then, as per (1.20), 0COMZ  , i.e. the 

center of mass of the system coincides with the initial 

position of the Earth and does not move. Therefore, we 

can make ( ) 0Z t   in (1.17) such that the equations 

(1.17) simplify to: 

 

2

1 2

2 2 2

1 2 1( )

d z GmGM

dt z z z
  


   

    

2

2 1

2 2 2

2 2 1( )

d z GmGM

dt z z z
 


   

     (1.21) 

1 2

2 2

1 2

m m

z z
  

 

Substituting 2
2 1

1

m
z z

m
   into the first equation we 

obtain a form that we already know how to solve:  

 

1 2

22
1 21

2 2

1

( )
( )

m m
G M

m md z

dt z




    

     (1.22) 

The time to collision for the fist test probe is: 

 
3/2

1 11
1

11 2

2

1 2

( )( ( ))
( )

( )
( )

( )

R r D R rR rD
t arctg

D R r Dm m
G M

m m

  
 

 




 (1.23) 

 

By symmetry, the time to collision for the second probe 

is: 

 
3/2

2 22
2

21 2

2

1 2

( )( ( ))
( )

( )
( )

( )

R r D R rR rD
t arctg

D R r Dm m
G M

m m

  
 

 




 (1.24) 

 

If the two test probes have identical radii, 1 2r r , they 

will hit the Earth simultaneously if dropped 

simultaneously from the same height above the Earth, 

diametrically opposed. The reason for this is that, by 

making the Earth the (stationary) center of mass, the 

heavier test probe cannot draw the Earth towards itself 

as in the previous example. This seems to contradict our 

earlier point that the two test probes must hit the Earth 

simultaneously since the COM is stationary. The 

contradiction is only apparent since, when drawing that 

conclusion, we have neglected a possible difference in 

the radii of the two test probes.  

 

2. The GR treatment of the problem using the 

lagrangian method  

 

 While radial motion is the easiest type of motion 

to describe in natural language, it turns out that its 

equations are far from trivial [3]. We will show how to 

derive the equations of motion via a very accessible 

approach, requiring only elementary calculus and 

lagrangian mechanics. In order to find the equations of 

motion we start with the “reduced” Schwarzschild 

metric for the particular case of absence of rotation 

( 0d d   ):  

 

2 2 21

1 s

ds dt dr

r

r






 

 

    

     (2.1) 

 

where 
2

2
s

GM
r

c
 is the Schwarzschild radius. For 

example, the Schwarzschild radius of the Earth is 9 

millimeters. From the metric we obtain: 

 

a) the lagrangian [2] 

 

2 2

2 2

1dt dr
L

ds ds



      

     (2.2) 

b) from the lagrangian we obtain the Euler-Lagrange 

system of equations: 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) 

 

60 

( ) 0

( ) 0

d L L

ds tt

d L L

ds rr





 
 


 
 


    

     (2.3) 

and, respectively: 

2 2

2 2 2 2 2

2 2 2

( ) 0

2 1
( ) ( ) ( )

2( ) 2

d dt

ds ds

dt
k

ds

d L L d r d d
t r

ds r ds dr drr

d d d

r d r ddr dr drr r t r t
dr dr







 

  
 

    


 



 
    





  
    


        

    (2.4) 

The over-dots signify derivative with respect to s . From 

the metric (2.1) we obtain: 

 

2 21
( ) 1 ( )
dt dr

ds ds



      

     (2.5) 

Substituting (2.5) into (2.4) we obtain 

 

c) the equation of motion: 

 

2

2

1
0

2

d r d

ds dr


      

     (2.6) 

with the solution 

 

/ 2
( )sr r

s Darctg r D r
D D r

  


 

     (2.7) 

where (0)D r , exactly like in the classical case 

described in the previous paragraph. From (2.7)  and the 

condition 1r R r  we obtain the time to collision: 

 

3/2
1 11

1

( )( ( ))
( )

( )

R r D R rR rD
arctg

D R r DGM


  
 

 

    (2.8) 

 

Comparing the GR solution with the classical 

Newtonian solution we observe that the GR solution 

does not depend on the mass of the test probe, so there is 

a slight disagreement, of the order of 
m

M
 between the 

classical and the contemporary theory.  This can be 

explained easily by remembering that, in GR, the test 

probes have negligible mass, so the answer in (2.8) is 

given for the case 0m  . This completely reconciles the 

Newtonian theory with GR.  

       

II. CONCLUSION 

 

When analyzing the free fall between bodies of 

comparable mass, one must apply precise analysis 

because the standard approximation would fail in many 

cases. As we've seen, one can sometimes look at 

something long taken for granted, and if one is patient 

enough one can uncover very interesting subtleties. For 

example, we have seen that Galileo’s claim was wrong 

for the case of two bodies of different mass dropped 

sequentially, in vacuum, from the same distance above 

the Earth, the more massive body impacts the Earth in a 

shorter time.  
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Appendix: 

 
2

1 1

2

2 2
2 1 3 2

2 2

( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( )

2

d z d dz d dz dz d dt dt

dt dt dt dz dt dt dz dz dz

dt d t dt dt d t d dt

dz dz dz dz dz dz dz

 

   

   

    

     (A1) 

 

Applying the above, equation (28) becomes: 

 

2

2
( )

d dt k

dz dz z

       (A2) 
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With the notation 
2( )

dt
y

dz

  equation (A2) becomes: 

2

dy k

dz z
      (A3) 

 

with the immediate solution: 

 

0

k k
y

z z
      (A4) 

 

where 0 (0)z z . On the other hand,
2( )

dz
y

dt
 , so (A4) 

reduces to: 

 

0

dz k k

dt z z
      (A5) 

 

Finally, we are now ready to obtain the equation of 

motion by solving (A5) through variable separation: 

 

0

dz
dt

k k

z z





    (A6) 

(A6) has the immediate solution:  

 

0 0

0 0

( )
k z

t z arctg z z z
z z z

  


  (A7) 

 

 

 


